目前大多數的 LED 屬于 (近) 朗伯型光源,為了使 LED 的發光分布符合實際應用,需要對LED進行二次配光。現有的 LED 配光有反射式 (反光杯) 和折射式 (透鏡) 等方式,其中折射式配光對光的控制性強,被廣泛應用于道路和隧道照明中。為了使 LED 照明燈具有更高的能量利用率,目前道路燈具的配光多數采用偏光形式。這里的偏光指的是燈具的配光沿著車輛行進方向為對稱分布,而垂直于車輛行進方向為非對稱分布
全偏光 LED 隧道燈透鏡的設計思路為: 首先把LED 光源發出的能量半球劃分為若干份能量單元,接著把目標平面劃分為若干份面積單元,最后根據光學擴展量守恒定律、折射定律以及邊緣光學原理,建立起能量單元與面積單元之間的能量對應關系,并計算出生成自由曲面透鏡模型所需要種子線的坐標。把種子線導入 Solidworks 等三維設計軟件里即可生成所需要的透鏡模型。這種基于能量網格劃分的透鏡設計方法已被廣泛應用在 LED 配光設計中。光源能量和目標平面的劃分如圖4所示。
LED的半球面發光情況使用角度 (u,v) 來表示,如圖 4 (1) 所示。其中 O 點位于LED發光的中心,并且光強的最大值沿 Z 軸方向。另外,每一份能量單元的大小通過 (Δu,Δv) 來劃分,并且對應著目標平面區域上的面積單元 (Δx,Δy) ,如圖 4 (2) 所示。每一份能量單元的大小為:
式 (2) 表示把 LED 的半球面總的光能量 Φ 劃分為M × N 份,每一份的能量為能量為能量單元與目標面積單元的劃分,影響著最終配光的效果。能量劃分算法通常是把 LED 的能量半球進行能量等份劃分,而對于目標區域 (如車道)則通過調整面積單元 (Δx,Δy) 的大小來進行能量分配。如果能量單元被分配到一個面積較小的面積單元 (Δx,Δy),則該區域的能量密度就較高; 反之較小。通過這種能量重新分配的設計方法可實現LED的偏光控制,其詳細的分析與計算過程可參考相關文獻。這種把LED的圓形發光劃分為矩形網格的方法,符合長方形的道路實際需要,提高了燈具能量利用率。LED 半球面發光的空間角度表示,(2)、(3) LED 發光球面上能量單元與目標面上面積單元的對應關系
自由曲面透鏡的關鍵坐標點是通過科學計算軟件 Matlab 程序把上述的設計思路轉化為數學語言計算出來的,通常直接出來的坐標點并不能直接得到道路需要的透鏡模型,主要原因有以下幾個方面。首先,計算程序是把 LED 光源簡化為點光源,然后利用光學中的折射定律進行自由曲面求解。然而,實際 LED 的發光面相對于透鏡來說尺寸較大,這會造成計算結果有誤差。另外,LED 的光強分布通常也不是理想的朗伯分布,即 LED 的光強分布呈余弦變化。其次,在種子線的計算過程中,由于后一個點的計算是以前一個點作為參考,所以種子線會出現計算的累積誤差。最后,道路照明應用需要考慮亮度均勻性,而原始的計算方式只是以能量 (照度) 均勻性來計算的。因此,在程序中需要引入適當的網格調制因子以修正誤差,并能量分布滿足道路照明的亮度均勻性需要。
設計實例及結果分析:
基于上述算法,本實例設計了一個適用于兩車道的全偏光 LED 隧道燈透鏡。透鏡所用燈珠為Philips 的白光 Luxeon T,其發光效率最高可達130lm/W。透鏡的三維模型用于構造三維模型所設計的種子線。
全偏光透鏡的三維模型,(2) 用于構造三維模型所設計的種子線